Definitions of Integral and Function =================================== Function ---------- A **function** is a relationship or rule that assigns to each element from one set (the **domain**) exactly one element from another set (the **codomain** or **range**). Key Properties: - **Input-Output Relationship:** For every input :math:`x` in the domain, there is exactly one output :math:`f(x)`. - **Notation:** Written as :math:`f: X \to Y`, where :math:`X` is the domain and :math:`Y` is the codomain. - **Examples:** - Linear function: :math:`f(x) = 2x + 3` - Quadratic function: :math:`f(x) = x^2` - Trigonometric function: :math:`f(x) = \sin(x)` Integral ---------- An **integral** represents the accumulation of quantities (e.g., areas under curves) and is the inverse operation of derivatives. Types of Integrals: 1. **Indefinite Integral:** - Represents a family of functions (includes :math:`+C`). - Notation: :math:`\int f(x) \, dx = F(x) + C`, where :math:`F(x)` is the antiderivative of :math:`f(x)`. - Example: :math:`\int 2x \, dx = x^2 + C`. 2. **Definite Integral:** - Computes net accumulation over :math:`[a, b]`. - Notation: :math:`\int_a^b f(x) \, dx`. - Example: :math:`\int_0^2 2x \, dx = 4` (area under :math:`2x` from 0 to 2). Applications: - Area/volume calculations. - Work, displacement, and solving differential equations. Relationship (Fundamental Theorem of Calculus): ------------------------------------------------- :math:`\frac{d}{dx} \left( \int f(x) \, dx \right) = f(x)`. Difference Definition of the Derivative (Using df) ---------------------------------------------------- The derivative of a function :math:`f` at a point :math:`x_0` can be expressed using the difference quotient with differential notation: .. math:: \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} Where: - :math:`df` = infinitesimal change in :math:`f` - :math:`dx` = infinitesimal change in :math:`x` - :math:`\Delta x` = finite change in :math:`x` Integral Form (Fundamental Theorem of Calculus) ---------------------------------------------- For an integral :math:`F(x) = \int f(x) \, dx`, the derivative is: .. math:: \frac{dF}{dx} = \lim_{\Delta x \to 0} \frac{\int_{x_0}^{x_0 + \Delta x} f(x) \, dx - \int^{x_0} f(x) \, dx}{\Delta x} = f(x_0) Notes ----- - Subscripts (like :math:`x_0`) are rendered correctly. - Greek letters (:math:`\Delta`, :math:`\delta`) are supported. - Limits and fractions are properly formatted.